

Subject with Code :ENGINEERING PHYSICS(20HS0848)

Course & Branch: B.Tech –CIVIL,ME & AGE

Year & Sem : I-B.Tech & I/II-Sem

Regulation: R20

UNIT- I WAVE OPTICS

1	a) State and explain principle of superposition.	[6M] [L1]
	b) Summarize the important conditions to get interference.	[6M] [L2]
2	a) Discuss the theory of interference of light due to thin films by reflection with	
	suitable ray diagram.	[4M] [L1]
	b) Derive the condition for constructive and destructive interference in the case	
	of reflected system.	[8M] [L4]
3	a) Describe the formation of Newton's rings with necessary theory with relevant	
	diagram and derive the expressions for dark and bright fringes.	[9M] [L3]
	b) In a Newton's rings experiment, the diameter of the 5 th ring is 0.30 cm and the	
	diameter of the 15 th ring is 0.62 cm. Calculate the diameter of the 25 th ring.	[3M] [L4]
4	a) Explain how the wavelength of light source is determined by forming	
	Newton's rings.	[8M] [L4]
	b) In a Newton's rings experiment, the diameter of the 8 th ring was 0.35cm and th	e
	diameter of the 18 th ring was 0.65cm. If the wavelength of the light used is 6000A	0
	then, find the radius of curvature of the plano-covex lens.	[4M] [L4]
5.	a) Write engineering applications of Interference and diffraction.	[8M] [L3]
	b) A parallel beam of light of 6000 A° is incident on a thin glass plate of refractiv	e
	index 1.5 such that the angle of refraction into the plate is 50°. Calculate the least	
	thickness of the glass plate which will appear dark by reflection.	[4M] [L4]
6.	a) Define diffraction? Distinguish between Fraunhoffer and Fresnel diffraction?	[6M][L4]
	b) Distinguish between Interference and Diffraction?	[6M] [L4]
7.	a). Explain the theory of Fraunhoffer diffraction due to single slit.	[8M] [L4]
	b). Obtain conditions for bright and dark fringes in single slit diffraction pattern	
	and draw intensity distribution.	[4M] [L4]
8.	a) Describe Fraunhoffer diffraction due to double slit and derive the conditions	
	for principal maxima, secondary maxima and minima.	[8M] [L3]
	b) A plane transmission grating having 4250 lines per cm is illuminated with	
	sodium light normally. In the second order spectrum, the spectral lines are	
	deviated by 30° . What is the wavelength of the spectral line?	[4M] [L4]
9.	a) What is Diffraction grating and explain.	[8M] [L4]
	b) Find the highest order that can be seen with a grating having 15000 lines/inche	es.

ENGINEERING PHYSICS

	QUESTION BANK 2020
The wavelength of the light used is 600nm.	[4M] [L4]
10 a) Explain the Grating Spectrum?	[6M] [L4]
b) Derive the expression for wavelength of light by diffraction.	[6M] [L4]
UNIT –II	
CRYSTALLOGRAPHY& X – RAY DIFFRA	ACTION
1. a) What is (i) Unit cell (ii) Basis (iii) Bravais Lattice iv) Lattice	Point. [4M] [L1]
b) Explain the various types of crystal systems with neat sketch a	
 a) Derive the packing factor of SC. 	[6M] [L4]
b) Derive the packing factor of BCC.	[6M] [L4]
3. a) Define coordination number and atomic packing factor.	[4M] [L1]
b) Show that FCC is mostly closed packed structure than BCC ar	
4. a) What are Miller indices? Mention the procedure to find Miller	r indices [8M] [L2]
b) Write the important features of Miller indices.	[4M] [L1]
5. a) Deduce the expression for the inter-planar distances in terms of	of Miller indices for
a cubic system.	[8M] [L4]
b) Draw Miller indices of planes (1 0 0), (1 0 1), (0 0 1) and $(\overline{1}$	0 0) [4M] [L4]
6. a) State and explain Bragg's law of X-ray diffraction.	[8M] [L4]
b) Find the ratio d_{100} : d_{110} : d_{111} for a simple cubic structure.	[4M] [L1]
7. a) Consider a body centered cubic lattice of identical atoms having	ng radius R.
Compute 1) The number atoms per unit cell 2) The coordination	on number
3) The packing fraction.	[9M] [L2]
b) Calculate the radius of atoms in α –iron belonging to BCC stru	cture. Take the
density of α - iron as 7860kg /m ³ and atomic weight of iron as 53	
8 a) What are Bravais lattices? What are the different space lattices	s in the cubic
system?	[8M] [L1]
b) For a cubic system , if 'a' is the lattice constant , then find the	interplanar separation
for (111) planes.	[4M] [L1]
9. a) Explain how the X-ray diffraction can be employed to determine	•
structure.	[9M] [L4]
b) The Bragg's angle for reflection from the (111) plane in a FCC	•
X-ray wavelength of 1.54 A.U , Calculate cube edge of the unit	
10. a) Explain the principle, procedure and advantage of Debye-Sche	
of X-ray diffraction.	[9M] [L4]
b) Find the angle at which the third order reflection of X-ray of 0.7	-
can occur in a calcite crystal of 3.04×10^{-10} spacing?	[3M] [L1]

UNIT-III ACOUSTICS AND ULTRASONICS

1.	(a)	Define Reverberation and Reverberation time?	[7 M] [L1]
	(b)	What are the basic requirements of acoustically good hall?	[5 M] [L1]
2.	(a)	Define absorption coefficient of sound and derive it?	[7 M] [L4]
	(b)	A class room of volume 360 m^3 has a reverberation time 1.6 seconds.	[5 M] [L4]
		Calculate the total sound absorption coefficient of the class room.	
3.	(a)	Derive Sabine's formula for reverberation time? Mention factors	[7 M] [L1]
		controlling the reverberation time?	
	(b)	A hall of volume 1000 m^3 is found to have a reverberation time of 2	[5 M] [L4]
		seconds. If the area of the sound absorbing surface is 350 m^2 , calculate	
		average absorption coefficient?	
4.	(a)	Define following terms	[8M] [L1]
		(1) Reverberation	
		(2) Absorption coefficient	
		(3) Pitch and Loudness of sound	
	(b)	A class room of volume 200 m^3 has a reverberation time of 1.6 seconds.	[4 M] [L4]
		Calculate the total sound absorption coefficient of the class room.	
5.	(a)	What is the importance of acoustics in engineering	[6 M] [L1]
	(b)	How we optimize the reverberation time in the music halls?	[6 M] [L1]
6.	(a)	Write the properties of Ultrasonic waves.	[6 M] [L1]
	(b)	Explain the detection methods of Ultrasonic waves.	[6 M] [L4]
7.	(a)	Explain Piezoelectric effect.	[4 M] [L4]
	(b)	Describe the application of Ultrasonics in non-destructive testing (NDT)	[8 M] [L2]
		of material	
8.	(a)	How ultrasonics are produced by using piezoelectric generator?	[8 M] [L3]
	(b)	A quartz crystal has a thickness of 4 x 10^{-3} and density 3 x 10^{3} kg/m ³ .	[4 M] [L4]
		Calculate its fundamental frequency. Give the Young's modulus of crystal	
		is 8.2 x 10^{10} N/m ² .	
9.	(a)	Discuss the important applications of ultrasonic waves.	[6 M] [L1]
	(b)	How will you classify sound waves based on their frequencies?	[6 M] [L3]
10.	(a)	Write brief note on medical applications of ultrasonic waves.	[6 M] [L1]
	(b)	What are the characteristics of sound?	[6 M] [L1]

$\mathbf{UNIT} - \mathbf{IV}$

MECHANICS OF SOLIDS

1.	a) Define the following	
	i) Elasticity ii) isotropic materials iii) rigid body iv) Plasticity v) Hooke's law	[5M][L1]
	b) What is stress? Explain different types of stresses.	[7M][L4]
2.	a) What is Hooke's law? Explain.	[4M][L1]
3.	b) Describe the behavior of a wire under an increasing load.	[8M][L3]
3.	a) Define i) Young's modulus ii) Bulk modulus	
	iii) Rigidity modulus iv) Poisson's ratio	[4M][L1]
	b) Derive the relation between different elastic moduli.	[8M][L4]
4.	a) Mention different types of supports.	[8M][L1]
	b) Calculate Poisson's ratio for silver.	
	Given its Young's modulus = $7.25 \times 10^{10} \text{ N/m}^2$ and bulk modulus = $11 \times 10^{10} \text{ N/m}^2$.	[4M][L4]

ENGINEERING PHYSICS

	QUESTION BAI	NK 2020
5.	a) Classify different types of beams.	[8M][L2]
	b) Obtain an expression for the internal energy due to strain.	[4M][L4]
6.	a) Define strain. Explain the types of strain.	[8M][L4]
	b) A wire of 3.0 m long and 0.625 sq.cm in cross section is found to stretch by 0.3	cm
	under a tension of 1200 kg. What is Young's modulus of the material of the wire?	[4M][L1]
7.	a) Define Young's modulus and bulk modulus.	[4M][L1]
	b) Obtain the relation between the Young's modulus and bulk modulus.	[8M][L4]
8.	a) Define Young's modulus and rigidity modulus.	[4M][L1]
	b) Obtain the relation between rigidity modulus and Young's modulus.	[8M][L4]
9.	a) Define shear strain. Explain how shear strain is related to modulus of rigidity.	[8M][L4]
	b) The Young's modulus for steel is $Y=2x10^{11}N/m^2$ and its rigidity modulus	
	$\eta = 8 \times 10^{10} \text{N/m}^2$. Estimate the Poisson's ratio and its bulk modulus.	[4M][L4]
10	. a) Deduce an expression for energy stored per unit volume in stretched wire.	[7M][L4]
	b) Estimate the work done in stretching a wire of cross section 1.25 mm^2 and	
	length 1.9 m through 0.14 mm. The Young's modulus of wire is 45 $\times 10^9$ N/m ² .	[5M][L4]

UNIT-V SUPERCONDUCTIVITY AND PHYSICS OF NANOMATERIALS

1	a) Draws that summer conductor is a yeary good diamagnetic material	Γονλητη Ατ
1.	a) Prove that super conductor is a very good diamagnetic material.	[8M][L4]
	b) Write the properties of Superconductors.	[4M][L1]
2.	a) Explain the Type-I and Type-II superconductors.	[7M][L4]
	b) What is Meissner effect?	[5M][L1]
3.	a) Explain BCS theory of superconductors.	[9M][L4]
	b).Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for	or lead
	$T_c = 7.18K$, Ho=6.5 x 10 ⁴ A/m.	[3M][L4]
4.	a) What is flux quantization?	[8M][L1]
	b) A superconducting material has a critical temperature of 3.7K and a magnetic	field of
	0.0306T at 0 K. Find the critical field at 2K.	[4M][L1]
5.	a) Explain Josephson effect in superconductors.	[8M][L4]
	b) Write the applications of superconductors.	[4M][L1]
6.	a) What is nanomaterial? Write the classification of nanomaterials.	[4M][L1]
	b) Explain the basic principle of nanomaterials.	[8M][L4]
7.	a) Explain the concept of Quantum Confinement in nanomaterials.	[6M][L4]
	b) Write the applications of nanomaterials in different fields.	[6M][L1]
8.	a) Explain why surface area to volume ratio very large for nanomaterials?	[7M][L4]
	b) Write the mechanical, magnetic and optical properties of nanomaterials.	[5M][L1]
9.	a) What are the techniques available for synthesizing nanomaterials?	[4M][L1]
	b) Explain ball milling technique for synthesis of nanomaterial.	[8M][L4]
10.	a) Explain Sol-Gel technique for synthesis of nanomaterial.	[8M][L4]
	b) Write advantages of sol-gel process.	[4M][L1]

Prepared by: Department of Physics

ENGINEERING PHYSICS